Resolution procedures for multiple-valued optimization

نویسندگان

  • Carlos Ansótegui
  • Maria Luisa Bonet
  • Jordi Levy
  • Felip Manyà
چکیده

Signed clausal forms offer a suitable logical framework for automated reasoning in multiple-valued logics. It turns out that the satisfiability problem of any finitely-valued propositional logic, as well as of certain infinitely-valued logics, can be easily reduced, in polynomial time, to the satisfiability problem of signed clausal forms. On the other hand, signed clausal forms are a powerful knowledge representation language for constraint programming, and have shown to be a practical and competitive approach to solving combinatorial decision problems. Motivated by the existing theoretical and practical results for the satisfiability problem of signed clausal forms, as well as by the recent logical and algorithmic results on the Boolean maximum satisfiability problem, in this paper we investigate the maximum satisfiability problem of propositional signed clausal forms from the logical and practical points of view. From the logical perspective, our aim is to define complete inference systems taking as a starting point the resolution-style calculi defined for the Boolean CNF case. The result is the definition of two sound and complete resolution-style rules, called signed binary resolution and signed parallel resolution for maximum satisfiability. From the practical perspective, our main motivation is to use the language of signed clausal forms along with the newly defined inference systems as a generic approach to solve combinatorial optimization problems, and not just for solving decision problems as so far. The result is the establishment of a link between signed logic and constraint programming that provides a concise and elegant logical framework for weighted constraint programming. 2012 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone

In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.

متن کامل

Multiple Fuzzy Regression Model for Fuzzy Input-Output Data

A novel approach to the problem of regression modeling for fuzzy input-output data is introduced.In order to estimate the parameters of the model, a distance on the space of interval-valued quantities is employed.By minimizing the sum of squared errors, a class of regression models is derived based on the interval-valued data obtained from the $alpha$-level sets of fuzzy input-output data.Then,...

متن کامل

Solving a non-convex non-linear optimization problem constrained by fuzzy relational equations and Sugeno-Weber family of t-norms

Sugeno-Weber family of t-norms and t-conorms is one of the most applied one in various fuzzy modelling problems. This family of t-norms and t-conorms was suggested by Weber for modeling intersection and union of fuzzy sets. Also, the t-conorms were suggested as addition rules by Sugeno for so-called  $lambda$–fuzzy measures. In this paper, we study a nonlinear optimization problem where the fea...

متن کامل

Methods of Optimization in Imprecise Data Envelopment Analysis

  In this paper imprecise target models has been proposed to investigate the relation between imprecise data envelopment analysis (IDEA) and mini-max reference point formulations. Through these models, the decision makers' preferences are involved in interactive trade-off analysis procedures in multiple objective linear programming with imprecise data. In addition, the gradient projection type...

متن کامل

Using Real-Valued Genetic Algorithms to Evolve Rule Sets for Classification

| In this paper, we use a genetic algorithm to evolve a set of classiication rules with real-valued attributes. We show how real-valued attribute ranges can be encoded with real-valued genes and present a new uniform method for representing don't cares in the rules. We view supervised classiication as an optimization problem, and evolve rule sets that maximize the number of correct classiicatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2013